NVIDIA
Explore Models Blueprints GPUs
Terms of Use

|

Privacy Policy

|

Manage My Privacy

|

Contact

Copyright © 2025 NVIDIA Corporation

hive

ai-generated-image-detection

Run Anywhere

Robust image classification model for detecting and managing AI-generated content.

ai safetycontent moderationcomputer visionimage classification
Get LicenseGet API Key
API Reference
Accelerated by DGX Cloud
Deploying your application in production? Get started with a 90-day evaluation of NVIDIA AI Enterprise

Follow the steps below to download and run the NVIDIA NIM inference microservice for this model on your infrastructure of choice.

Step 1
Generate API Key

Step 2
Pull and Run the NIM

Get the credentials to download the models from Hive and export them:

export NIM_REPOSITORY_OVERRIDE="s3://..." export AWS_REGION="..." export AWS_ACCESS_KEY_ID="..." export AWS_SECRET_ACCESS_KEY="..."

Pull and run the NVIDIA NIM with the command below.

# Create the cache directory on the host machine. export LOCAL_NIM_CACHE=~/.cache/nim mkdir -p "$LOCAL_NIM_CACHE" chmod 777 $LOCAL_NIM_CACHE # Run the container with the cache directory as a volume mount. docker run -it --rm --name=nim-server \ --runtime=nvidia \ --gpus='"device=0"' \ -e NIM_REPOSITORY_OVERRIDE \ -e AWS_REGION \ -e AWS_ACCESS_KEY_ID \ -e AWS_SECRET_ACCESS_KEY \ -e NIM_HTTP_API_PORT=8003 \ -p 8003:8003 \ -p 8002:8002 \ -v "$LOCAL_NIM_CACHE:/opt/nim/.cache/" \ nvcr.io/nim/hive/ai-generated-image-detection:1.0.0

Step 3
Test the NIM

You can now make a local API call using this curl command:

invoke_url="http://localhost:8003/v1/infer" input_image_path="input.jpg" # download an example image curl https://assets.ngc.nvidia.com/products/api-catalog/sdxl/sdxl1.jpg > $input_image_path image_b64=$(base64 $input_image_path) length=${#image_b64} echo '{ "input": ["data:image/png;base64,'${image_b64}'"] }' > payload.json curl $invoke_url \ -H "Content-Type: application/json" \ -d @payload.json

For more details on getting started with this NIM, visit the NVIDIA NIM Docs.