mit/diffdock
RUN ANYWHERE
Predicts the 3D structure of how a molecule interacts with a protein.
By running the below commands, you accept the NVIDIA AI Enterprise Terms of Use and the NVIDIA Community Models License.
Pull and run mit/diffdock
using Docker (this will download the full model and run it in your local environment)
$ docker login nvcr.io Username: $oauthtoken Password: <PASTE_API_KEY_HERE>
Pull and run the NVIDIA NIM with the command below. This will download the optimized model for your infrastructure.
export NGC_API_KEY=<PASTE_API_KEY_HERE> docker run -it --rm \ --runtime=nvidia -e NVIDIA_VISIBLE_DEVICES=0 \ --shm-size=2G \ --ulimit memlock=-1 \ --ulimit stack=67108864 \ -e NGC_API_KEY=$NGC_API_KEY \ -p 8000:8000 \ nvcr.io/nim/mit/diffdock:2.0.0
You can now make a local API call using this curl command:
protein_bytes=`curl -s https://files.rcsb.org/download/8G43.pdb | grep -E '^ATOM' | sed -z 's/\n/\\\n/g'`; \ ligand_bytes=`curl -s https://files.rcsb.org/ligands/download/ZU6_ideal.sdf | sed -z 's/\n/\\\n/g'`; \ echo "{ \"ligand\": \"${ligand_bytes}\", \"ligand_file_type\": \"sdf\", \"protein\": \"${protein_bytes}\", \"num_poses\": 1, \"time_divisions\": 20, \"steps\": 18, \"save_trajectory\": false, \"is_staged\": false }" > diffdock.json curl --header "Content-Type: application/json" \ --request POST \ --data @diffdock.json \ --output output.json \ http://localhost:8000/molecular-docking/diffdock/generate
For more details on getting started with this NIM, visit the NVIDIA NIM Docs.