Model for object detection, fine-tuned to detect charts, tables, and titles in documents.
Follow the steps below to download and run the NVIDIA NIM inference microservice for this model on your infrastructure of choice.
Install WSL2. For additional instructions refer to the documentation.
Once installed, open the NVIDIA-Workbench
WSL2 distro using the following command in the Windows terminal.
wsl -d NVIDIA-Workbench
$ podman login nvcr.io Username: $oauthtoken Password: <PASTE_API_KEY_HERE>
Pull and run the NVIDIA NIM with the command below.
export NGC_API_KEY=<PASTE_API_KEY_HERE> export LOCAL_NIM_CACHE=~/.cache/nim mkdir -p "$LOCAL_NIM_CACHE" chmod o+w "$LOCAL_NIM_CACHE" podman run -it --rm \ --device nvidia.com/gpu=all \ --shm-size=16GB \ -e NGC_API_KEY=$NGC_API_KEY \ -v "$LOCAL_NIM_CACHE:/opt/nim/.cache" \ -e NIM_RELAX_MEM_CONSTRAINTS=1 \ -u $(id -u) \ -p 8000:8000 \ nvcr.io/nim/nvidia/nv-yolox-page-elements-v1:1.1.0-rtx
The first few inference requests may take longer than subsequent ones. This is due to the model being loaded into memory and initialized for the first time.
You can now make a local API call by opening another Distro instance and using this curl command:
HOSTNAME="localhost" SERVICE_PORT=8000 curl -X "POST" \ "http://${HOSTNAME}:${SERVICE_PORT}/v1/infer" \ -H 'accept: application/json' \ -H 'Content-Type: application/json' \ -d '{ "input": [ { "type": "image_url", "url": "data:image/png;base64,<BASE64_ENCODED_IMAGE>" }, { "type": "image_url", "url": "data:image/png;base64,<BASE64_ENCODED_IMAGE>" } ] }'
For more details on getting started with this NIM, visit the NVIDIA NIM Docs.