NVIDIA
Explore Models Blueprints GPUs
Terms of Use

|

Privacy Policy

|

Manage My Privacy

|

Contact

Copyright © 2025 NVIDIA Corporation

hive

deepfake-image-detection

Run Anywhere

Advanced AI model detects faces and identifies deep fake images.

ai safetycontent moderationcomputer visiondeep fake detection
Get LicenseGet API Key
API Reference
Accelerated by DGX Cloud
Deploying your application in production? Get started with a 90-day evaluation of NVIDIA AI Enterprise

Follow the steps below to download and run the NVIDIA NIM inference microservice for this model on your infrastructure of choice.

Step 1
Generate API Key

Step 2
Pull and Run the NIM

$ docker login nvcr.io Username: $oauthtoken Password: <PASTE_API_KEY_HERE>

Get the credentials to download the models from Hive and export them:

export NIM_REPOSITORY_OVERRIDE="s3://..." export AWS_REGION="..." export AWS_ACCESS_KEY_ID="..." export AWS_SECRET_ACCESS_KEY="..."

Pull and run the NVIDIA NIM with the command below.

# Create the cache directory on the host machine. export LOCAL_NIM_CACHE=~/.cache/nim mkdir -p "$LOCAL_NIM_CACHE" chmod 777 $LOCAL_NIM_CACHE # Run the container with the cache directory as a volume mount. docker run -it --rm --name=nim-server \ --runtime=nvidia \ --gpus='"device=0"' \ -e NIM_REPOSITORY_OVERRIDE \ -e AWS_REGION \ -e AWS_ACCESS_KEY_ID \ -e AWS_SECRET_ACCESS_KEY \ -e NIM_HTTP_API_PORT=8003 \ -p 8003:8003 \ -p 8002:8002 \ -v "$LOCAL_NIM_CACHE:/opt/nim/.cache/" \ nvcr.io/nim/hive/deepfake-image-detection:1.0.0

Step 3
Test the NIM

You can now make a local API call using this curl command:

invoke_url="http://localhost:8003/v1/infer" input_image_path="input.jpg" # download an example image curl https://assets.ngc.nvidia.com/products/api-catalog/deepfake-image-detection/input/deepfake.jpg > $input_image_path image_b64=$(base64 $input_image_path) length=${#image_b64} echo '{ "input": ["data:image/png;base64,'${image_b64}'"], "return_image": false }' > payload.json curl $invoke_url \ -H "Content-Type: application/json" \ -d @payload.json

For more details on getting started with this NIM, visit the NVIDIA NIM Docs.