Sovereign AI model trained on Japanese language that understands regional nuances.
Llama 3.1 Swallow is a series of large language models (8B, 70B) that were built by continual pre-training on the Meta Llama 3.1 models. Llama 3.1 Swallow enhanced the Japanese language capabilities of the original Llama 3.1 while retaining the English language capabilities. We use approximately 200 billion tokens that were sampled from a large Japanese web corpus (Swallow Corpus Version 2), Japanese and English Wikipedia articles, and mathematical and coding contents, etc (see the Training Datasets section) for continual pre-training. The instruction-tuned models (Instruct) were built by supervised fine-tuning (SFT) on the synthetic data specially built for Japanese. See the Swallow Model Index section to find other model variants.
Model | Llama-3.1-Swallow | Llama-3.1-Swallow-Instruct |
---|---|---|
8B | Link | Link |
70B | Link | Link |
The website https://swallow-llm.github.io/ provides large language models developed by the Swallow team.
This model is not owned or developed by NVIDIA. This model has been developed and built to a third-party’s requirements for this application and use case; see link to Non-NVIDIA Model Card.
GOVERNING TERMS: This trial service is governed by the NVIDIA API Trial Terms of Service. Use of this model is governed by the Llama 3.1 Community License Agreement and the Gemma Terms of Use. Built with Llama.
Architecture Type: Transformer
Input Type(s): Text
Input Format(s): String
Input Parameters: One Dimensional (1D)
Output Type(s): Text
Output Format: String
Output Parameters: 1D
Supported Hardware Microarchitecture Compatibility:
Model | JCom. | JEMHopQA | NIILC | JSQuAD | XL-Sum | MGSM | WMT20-en-ja | WMT20-ja-en | JMMLU | JHumanEval | Ja Avg |
---|---|---|---|---|---|---|---|---|---|---|---|
4-shot | 4-shot | 4-shot | 4-shot | 1-shot | 4-shot | 4-shot | 4-shot | 5-shot | 0-shot | ||
EM acc | Char-F1 | Char-F1 | Char-F1 | ROUGE-2 | EM acc | BLEU | BLEU | EM acc | pass@1 | ||
Qwen2-72B-Instruct | 0.9634 | 0.6268 | 0.5418 | 0.9210 | 0.1644 | 0.7840 | 0.2592 | 0.2327 | 0.7713 | 0.6909 | 0.5955 |
Qwen2.5-72B-Instruct | 0.9696 | 0.5699 | 0.5811 | 0.7381 | 0.1706 | 0.8360 | 0.2269 | 0.2179 | 0.7899 | 0.6256 | 0.5726 |
Llama 3 70B Instruct | 0.9419 | 0.6114 | 0.5506 | 0.9164 | 0.1912 | 0.7200 | 0.2708 | 0.2350 | 0.6789 | 0.6610 | 0.5777 |
Llama 3.1 70B Instruct | 0.9482 | 0.6246 | 0.5781 | 0.9201 | 0.1772 | 0.7440 | 0.2805 | 0.2472 | 0.7323 | 0.6933 | 0.5945 |
Llama 3 Youko 70B Instruct | 0.9526 | 0.6252 | 0.5853 | 0.9215 | 0.1983 | 0.7400 | 0.2633 | 0.2245 | 0.7170 | 0.6098 | 0.5838 |
Llama-3.1-70B-Japanese-Instruct-2407 | 0.9562 | 0.6466 | 0.6602 | 0.9187 | 0.1564 | 0.7480 | 0.2901 | 0.2410 | 0.7227 | 0.6274 | 0.5967 |
Llama 3 heron brain 70B v0.3 | 0.9660 | 0.6643 | 0.6817 | 0.9221 | 0.2611 | 0.7720 | 0.3093 | 0.2578 | 0.7077 | 0.6079 | 0.6150 |
Llama 3 Swallow 70B Instruct | 0.9607 | 0.6188 | 0.6026 | 0.9236 | 0.1389 | 0.6560 | 0.2724 | 0.2532 | 0.6572 | 0.6000 | 0.5683 |
Llama 3.1 Swallow 70B Instruct | 0.9598 | 0.6192 | 0.6605 | 0.9235 | 0.1938 | 0.7760 | 0.3123 | 0.2593 | 0.7117 | 0.4713 | 0.5887 |
Model | OpenBookQA | TriviaQA | HellaSWAG | SQuAD2.0 | XWINO | MMLU | GSM8K | BBH | HumanEval | En Avg |
---|---|---|---|---|---|---|---|---|---|---|
4-shot | 4-shot | 4-shot | 4-shot | 4-shot | 5-shot | 4-shot | 3-shot | 0-shot | ||
Acc | EM acc | Acc | EM acc | Acc | Acc | EM acc | CoT EM Acc | pass@1 | ||
Qwen2-72B-Instruct | 0.4360 | 0.7588 | 0.6857 | 0.3913 | 0.9110 | 0.8391 | 0.8499 | 0.2436 | 0.6939 | 0.6455 |
Qwen2.5-72B-Instruct | 0.4540 | 0.6764 | 0.7064 | 0.3550 | 0.8895 | 0.8478 | 0.9113 | 0.4027 | 0.6165 | 0.6511 |
Llama 3 70B Instruct | 0.4400 | 0.7999 | 0.6552 | 0.4024 | 0.9127 | 0.7992 | 0.9052 | 0.8326 | 0.7555 | 0.7225 |
Llama 3.1 70B Instruct | 0.4300 | 0.8212 | 0.6621 | 0.3921 | 0.9157 | 0.8213 | 0.8764 | 0.8390 | 0.7915 | 0.7277 |
Llama 3 Youko 70B Instruct | 0.4500 | 0.7973 | 0.6863 | 0.3914 | 0.9153 | 0.8055 | 0.8923 | 0.7814 | 0.6598 | 0.7088 |
Llama-3.1-70B-Japanese-Instruct-2407 | 0.4220 | 0.8104 | 0.6481 | 0.3744 | 0.9170 | 0.8071 | 0.8893 | 0.8228 | 0.7463 | 0.7153 |
Llama 3 heron brain 70B v0.3 | 0.4460 | 0.8107 | 0.6682 | 0.4085 | 0.9174 | 0.7898 | 0.8772 | 0.7586 | 0.6713 | 0.7053 |
Llama 3 Swallow 70B Instruct | 0.4520 | 0.8174 | 0.6758 | 0.4050 | 0.9230 | 0.7883 | 0.8688 | 0.8152 | 0.6890 | 0.7150 |
Llama 3.1 Swallow 70B Instruct | 0.4520 | 0.8148 | 0.6834 | 0.4012 | 0.9157 | 0.7855 | 0.8886 | 0.8486 | 0.5823 | 0.7080 |
Model | coding | extraction | humanities | math | reasoning | roleplay | stem | writing | JMTAvg |
---|---|---|---|---|---|---|---|---|---|
Qwen2-72B-Instruct | 0.5699 | 0.7858 | 0.8222 | 0.5096 | 0.7032 | 0.7963 | 0.7728 | 0.8223 | 0.7228 |
Qwen2.5-72B-Instruct | 0.7060 | 0.7866 | 0.8122 | 0.6968 | 0.6536 | 0.8301 | 0.8060 | 0.7841 | 0.7594 |
Llama 3 70B Instruct | 0.5969 | 0.8410 | 0.7120 | 0.4481 | 0.4884 | 0.7117 | 0.6510 | 0.6900 | 0.6424 |
Llama 3.1 70B Instruct | 0.5252 | 0.7846 | 0.7086 | 0.5063 | 0.6979 | 0.6888 | 0.6402 | 0.6653 | 0.6521 |
Llama 3 Youko 70B Instruct | 0.6632 | 0.8387 | 0.8108 | 0.4655 | 0.7013 | 0.7778 | 0.7544 | 0.7662 | 0.7222 |
Llama-3.1-70B-Japanese-Instruct-2407 | 0.6267 | 0.7525 | 0.7938 | 0.5750 | 0.5590 | 0.7725 | 0.7240 | 0.7180 | 0.6902 |
Llama 3 heron brain 70B v0.3 | 0.3762 | 0.7892 | 0.7274 | 0.5589 | 0.5070 | 0.6662 | 0.6880 | 0.6996 | 0.6266 |
Llama 3 Swallow 70B Instruct | 0.5269 | 0.7250 | 0.5690 | 0.4669 | 0.6121 | 0.6238 | 0.5533 | 0.5698 | 0.5809 |
Llama 3.1 Swallow 70B Instruct | 0.5676 | 0.7859 | 0.7490 | 0.5437 | 0.6383 | 0.6870 | 0.6121 | 0.6540 | 0.6547 |
GPT-3.5 (gpt-3.5-turbo-0125) | 0.6851 | 0.7641 | 0.7414 | 0.5522 | 0.5128 | 0.7104 | 0.6266 | 0.7361 | 0.6661 |
GPT-4o (gpt-4o-2024-05-13) | 0.7296 | 0.8540 | 0.8646 | 0.6641 | 0.6661 | 0.8274 | 0.8184 | 0.8085 | 0.7791 |
We used llm-jp-eval(v1.3.0), JP Language Model Evaluation Harness(commit #9b42d41) and Code Generation LM Evaluation Harness(commit #0261c52). The details are as follows:
We used the Language Model Evaluation Harness(v.0.4.2) and Code Generation LM Evaluation Harness(commit #0261c52). The details are as follows:
We used Japanese MT-Bench to assess the instruction-following capabilities of models. We utilized the following settings:
gpt-4-1106-preview
Engine: TensorRT-LLM
Test Hardware:
NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
Please report security vulnerabilities or NVIDIA AI Concerns here.
pip install vllm
from transformers import AutoTokenizer from vllm import LLM, SamplingParams model_name = "tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_name) llm = LLM( model=model_name, tensor_parallel_size=4, ) sampling_params = SamplingParams( temperature=0.6, top_p=0.9, max_tokens=512, stop="<|eot_id|>" ) message = [ {"role": "system", "content": "あなたは誠実で優秀な日本人のアシスタントです。"}, { "role": "user", "content": "東京の紅葉した公園で、東京タワーと高層ビルを背景に、空を舞うツバメと草地に佇むラマが出会う温かな物語を書いてください。", }, ] prompt = tokenizer.apply_chat_template( message, tokenize=False, add_generation_prompt=True ) output = llm.generate(prompt, sampling_params) print(output[0].outputs[0].text)
The following instruction datasets were used for the instruction tuning.
lmsys-chat-1m-synth-ja-wo-pii-and-template-instructions
filtered-magpie-ultra-ja
filtered-magpie-ultra-en
dataset, machine-translated into Japanese using the gemma-2-27b-it.gemma-magpie
lmsys-chat-1m-synth-en-wo-pii-and-template-instructions
lmsys-chat-1m-synth-ja-wo-pii-and-template-instructions
, but this version uses the original English user instructions. The assistant responses were generated in English as well. Rejection sampling was not applied in this version.filtered-magpie-ultra-en
The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.
We thank Meta Research for releasing Llama 3.1 under a generous open license.
We received various supports including:
Here are the team members:
If you find our work helpful, please feel free to cite us.
@inproceedings{Fujii:COLM2024, title={Continual Pre-Training for Cross-Lingual LLM Adaptation: Enhancing Japanese Language Capabilities}, author={Kazuki Fujii and Taishi Nakamura and Mengsay Loem and Hiroki Iida and Masanari Ohi and Kakeru Hattori and Hirai Shota and Sakae Mizuki and Rio Yokota and Naoaki Okazaki}, booktitle="Proceedings of the First Conference on Language Modeling", series={COLM}, pages="(to appear)", year="2024", month=oct, address={University of Pennsylvania, USA}, } @inproceedings{Okazaki:COLM2024, title={Building a Large Japanese Web Corpus for Large Language Models}, author={Naoaki Okazaki and Kakeru Hattori and Hirai Shota and Hiroki Iida and Masanari Ohi and Kazuki Fujii and Taishi Nakamura and Mengsay Loem and Rio Yokota and Sakae Mizuki}, booktitle="Proceedings of the First Conference on Language Modeling", series={COLM}, pages="(to appear)", year="2024", month=oct, address={University of Pennsylvania, USA}, }
@misc{dubey2024llama3herdmodels, title={The Llama 3 Herd of Models}, author={Abhimanyu Dubey and Abhinav Jauhri and Abhinav Pandey and Abhishek Kadian and Ahmad Al-Dahle and Aiesha Letman and Akhil Mathur and Alan Schelten and Amy Yang and Angela Fan et al.}, year={2024}, eprint={2407.21783}, archivePrefix={arXiv}, primaryClass={cs.AI}, url={https://arxiv.org/abs/2407.21783}, }