NVIDIA
Explore Models Blueprints GPUs Docs
Terms of Use

|

Privacy Policy

|

Manage My Privacy

|

Contact

Copyright © 2025 NVIDIA Corporation

Models

Deploy and scale models on your GPU infrastructure of choice with NVIDIA NIM inference microservices
Publisher
Use Case
NIM Type
Sorting by Most Recent

nvidiallama-3.2-nemoretriever-1b-vlm-embed-v1

Multilingual and cross-lingual text question-answering retrieval with long context support and optimized data storage efficiency.

nemo retrieverembeddingretrieval augmented generationtext-to-embeddingnvidia

nvidianv-embedcode-7b-v1

The NV-EmbedCode model is a 7B Mistral-based embedding model optimized for code retrieval, supporting text, code, and hybrid queries.

nemo retrieverembeddingretrieval augmented generationnvidia

nvidiallama-3.2-nv-embedqa-1b-v2

Multilingual and cross-lingual text question-answering retrieval with long context support and optimized data storage efficiency.

nemo retrieverrun on rtxembeddingretrieval augmented generationtext-to-embeddingnvidia

nvidiallama-3.2-nv-rerankqa-1b-v2

Fine-tuned reranking model for multilingual, cross-lingual text question-answering retrieval, with long context support.

nemo retrieverretrieval augmented generationrerankingnvidia

metallama-3.2-11b-vision-instruct

Cutting-edge vision-language model exceling in high-quality reasoning from images.

image-text retrievalvisual qaimage-to-textimage captioningvisual groundingmeta

metallama-3.2-90b-vision-instruct

Cutting-edge vision-Language model exceling in high-quality reasoning from images.

image-text retrievalvisual qaimage captioningimage-to-textvisual groundingmeta

nvidianv-embedqa-e5-v5

English text embedding model for question-answering retrieval.

embeddingretrieval augmented generationnemo retrievertext-to-embeddingnvidia

nvidianv-embedqa-mistral-7b-v2

Multilingual text question-answering retrieval, transforming textual information into dense vector representations.

nemo retrieverembeddingretrieval augmented generationnvidia

baaibge-m3

Embedding model for text retrieval tasks, excelling in dense, multi-vector, and sparse retrieval.

embeddingsretrieval augmented generationtext-to-embeddingbaai

nvidiaembed-qa-4

GPU-accelerated generation of text embeddings used for question-answering retrieval.

embeddingsretrieval augmented generationtext-to-embeddingnvidia

nvidiarerank-qa-mistral-4b

GPU-accelerated model optimized for providing a probability score that a given passage contains the information to answer a question.

rankingretrieval augmented generationnvidia