nvidia

canary-1b-asr

Run Anywhere

Multi-lingual model supporting speech-to-text recognition and translation.

Deploying your application in production? Get started with a 90-day evaluation of NVIDIA AI Enterprise

Follow the steps below to download and run the NVIDIA NIM inference microservice for this model on your infrastructure of choice.

Generate API Key

Pull and Run the NIM

$ docker login nvcr.io Username: $oauthtoken Password: <PASTE_API_KEY_HERE>

Refer to Supported Models for full list of models.

export NGC_API_KEY=<PASTE_API_KEY_HERE> docker run -it --rm --name=riva-asr \ --runtime=nvidia \ --gpus '"device=0"' \ --shm-size=8GB \ -e NGC_API_KEY \ -e NIM_HTTP_API_PORT=9000 \ -e NIM_GRPC_API_PORT=50051 \ -p 9000:9000 \ -p 50051:50051 \ -e NIM_TAGS_SELECTOR=name=canary-1b \ nvcr.io/nim/nvidia/riva-asr:1.3.0

It may take a up to 30 minutes depending on your network speed, for the container to be ready and start accepting requests from the time the docker container is started.

Test the NIM

Open a new terminal and run following command to check if the service is ready to handle inference requests

curl -X 'GET' 'http://localhost:9000/v1/health/ready'

If the service is ready, you get a response similar to the following.

{"ready":true}

Install the Riva Python client package

sudo apt-get install python3-pip pip install nvidia-riva-client

Download Riva sample clients

git clone https://github.com/nvidia-riva/python-clients.git

Run Speech to Text inference in offline modes. Riva ASR supports Mono, 16-bit audio in WAV, OPUS and FLAC formats.

python3 python-clients/scripts/asr/transcribe_file_offline.py --server 0.0.0.0:50051 --input-file <path_to_speech_file> --language-code en-US

For more details on getting started with this NIM, visit the Riva ASR NIM Docs.