
nvidia
canary-1b-asr
Run AnywhereMulti-lingual model supporting speech-to-text recognition and translation.
Follow the steps below to download and run the NVIDIA NIM inference microservice for this model on your infrastructure of choice.
Generate API Key
Pull and Run the NIM
$ docker login nvcr.io Username: $oauthtoken Password: <PASTE_API_KEY_HERE>
Refer to Supported Models for full list of models.
export NGC_API_KEY=<PASTE_API_KEY_HERE> docker run -it --rm --name=riva-asr \ --runtime=nvidia \ --gpus '"device=0"' \ --shm-size=8GB \ -e NGC_API_KEY \ -e NIM_HTTP_API_PORT=9000 \ -e NIM_GRPC_API_PORT=50051 \ -p 9000:9000 \ -p 50051:50051 \ -e NIM_TAGS_SELECTOR=name=canary-1b \ nvcr.io/nim/nvidia/riva-asr:1.3.0
It may take a up to 30 minutes depending on your network speed, for the container to be ready and start accepting requests from the time the docker container is started.
Test the NIM
Open a new terminal and run following command to check if the service is ready to handle inference requests
curl -X 'GET' 'http://localhost:9000/v1/health/ready'
If the service is ready, you get a response similar to the following.
{"ready":true}
Install the Riva Python client package
sudo apt-get install python3-pip pip install nvidia-riva-client
Download Riva sample clients
git clone https://github.com/nvidia-riva/python-clients.git
Run Speech to Text inference in offline modes. Riva ASR supports Mono, 16-bit audio in WAV, OPUS and FLAC formats.
python3 python-clients/scripts/asr/transcribe_file_offline.py --server 0.0.0.0:50051 --input-file <path_to_speech_file> --language-code en-US
For more details on getting started with this NIM, visit the Riva ASR NIM Docs.