NVIDIA
Explore Models Blueprints GPUs
Terms of Use

|

Privacy Policy

|

Manage My Privacy

|

Contact

Copyright © 2025 NVIDIA Corporation

nvidia

conformer-ctc-asr

Run Anywhere

Automatic speech recognition model that transcribes speech in lower case English with record-setting accuracy and performance

asrnvidia nimnvidia rivaspanishstreamingspeech-to-text
Get API Key
API Reference
Accelerated by DGX Cloud
Deploying your application in production? Get started with a 90-day evaluation of NVIDIA AI Enterprise

Follow the steps below to download and run the NVIDIA NIM inference microservice for this model on your infrastructure of choice.

Step 1
Generate API Key

Step 2
Pull and Run the NIM

$ docker login nvcr.io Username: $oauthtoken Password: <PASTE_API_KEY_HERE>

Refer to Supported Models for full list of models.

export NGC_API_KEY=<PASTE_API_KEY_HERE> docker run -it --rm --name=riva-asr \ --runtime=nvidia \ --gpus '"device=0"' \ --shm-size=8GB \ -e NGC_API_KEY \ -e NIM_HTTP_API_PORT=9000 \ -e NIM_GRPC_API_PORT=50051 \ -p 9000:9000 \ -p 50051:50051 \ -e NIM_TAGS_SELECTOR=name=conformer-ctc-riva-es-us,mode=str \ nvcr.io/nim/nvidia/riva-asr:1.3.0

It may take a up to 30 minutes depending on your network speed, for the container to be ready and start accepting requests from the time the docker container is started.

Step 3
Test the NIM

Open a new terminal and run following command to check if the service is ready to handle inference requests

curl -X 'GET' 'http://localhost:9000/v1/health/ready'

If the service is ready, you get a response similar to the following.

{"ready":true}

Install the Riva Python client package

sudo apt-get install python3-pip pip install nvidia-riva-client

Download Riva sample clients

git clone https://github.com/nvidia-riva/python-clients.git

Run Speech to Text inference in streaming modes. Riva ASR supports Mono, 16-bit audio in WAV, OPUS and FLAC formats.

python3 python-clients/scripts/asr/transcribe_file.py --server 0.0.0.0:50051 --input-file <path_to_speech_file> --language-code es-US

For more details on getting started with this NIM, visit the Riva ASR NIM Docs.