NVIDIA
Explore
Models
Blueprints
GPUs
Docs
⌘KCtrl+K
Terms of Use
Privacy Policy
Your Privacy Choices
Contact

Copyright © 2026 NVIDIA Corporation

nvidia

fourcastnet

Run Anywhere

FourCastNet predicts global atmospheric dynamics of various weather / climate variables.

AI Weather PredictionClimate scienceEarth-2Weather Simulation
Get API Key
API Reference
Accelerated by DGX Cloud
Deploying your application in production? Get started with a 90-day evaluation of NVIDIA AI Enterprise

Follow the steps below to download and run the NVIDIA NIM inference microservice for this model on your infrastructure of choice.

Step 1
Generate API Key

Step 2
Pull and Run the NIM

Pull and run the NVIDIA Earth-2 FourCastNet NIM with the command below.

docker pull nvcr.io/nim/nvidia/fourcastnet:latest

This will download the optimized model for your infrastructure.

export NGC_API_KEY=<NGC API Key>

docker run --rm --runtime=nvidia --gpus all --shm-size 4g \
    -p 8000:8000 \
    -e NGC_API_KEY \
    nvcr.io/nim/nvidia/fourcastnet:latest

Step 3
Test the NIM

Check the health of the NIM with the following curl command:

curl -X 'GET' \
    'http://localhost:8000/v1/health/ready' \
    -H 'accept: application/json'

Generate an input numpy array for the model using the following Python script with Earth2Studio:

import numpy as np
from datetime import datetime
from earth2studio.data import ARCO
from earth2studio.models.px.sfno import VARIABLES

ds = ARCO()
da = ds(time=datetime(2023, 1, 1), variable=VARIABLES)
np.save("fcn_inputs.npy", da.to_numpy()[None].astype('float32'))

You can now make a local API call using this curl command:

curl -X POST \
    -F "input_array=@fcn_inputs.npy" \
    -F "input_time=2023-01-01T00:00:00Z" \
    -F "simulation_length=4" \
    -o output.tar \
    http://localhost:8000/v1/infer

For more details on getting started with this NIM, visit the NVIDIA NIM Docs. For more details on the model and its input / output tensors see the FourCastNet SFNO Model Card.