
FourCastNet predicts global atmospheric dynamics of various weather / climate variables.
Follow the steps below to download and run the NVIDIA NIM inference microservice for this model on your infrastructure of choice.
Pull and run the NVIDIA Earth-2 FourCastNet NIM with the command below.
docker pull nvcr.io/nim/nvidia/fourcastnet:latest
This will download the optimized model for your infrastructure.
export NGC_API_KEY=<NGC API Key>
docker run --rm --runtime=nvidia --gpus all --shm-size 4g \
-p 8000:8000 \
-e NGC_API_KEY \
nvcr.io/nim/nvidia/fourcastnet:latest
Check the health of the NIM with the following curl command:
curl -X 'GET' \
'http://localhost:8000/v1/health/ready' \
-H 'accept: application/json'
Generate an input numpy array for the model using the following Python script with Earth2Studio:
import numpy as np
from datetime import datetime
from earth2studio.data import ARCO
from earth2studio.models.px.sfno import VARIABLES
ds = ARCO()
da = ds(time=datetime(2023, 1, 1), variable=VARIABLES)
np.save("fcn_inputs.npy", da.to_numpy()[None].astype('float32'))
You can now make a local API call using this curl command:
curl -X POST \
-F "input_array=@fcn_inputs.npy" \
-F "input_time=2023-01-01T00:00:00Z" \
-F "simulation_length=4" \
-o output.tar \
http://localhost:8000/v1/infer
For more details on getting started with this NIM, visit the NVIDIA NIM Docs. For more details on the model and its input / output tensors see the FourCastNet SFNO Model Card.