NVIDIA
Explore
Models
Blueprints
GPUs
Docs
Terms of Use
Privacy Policy
Your Privacy Choices
Contact

Copyright © 2025 NVIDIA Corporation

openai

whisper-large-v3

Run Anywhere

Robust Speech Recognition via Large-Scale Weak Supervision.

ASRASTMultilingualNVIDIA NIMNVIDIA RivaOpenAIbatchSpeech-to-Textwhisper
Get API Key
API Reference
Accelerated by DGX Cloud
Deploying your application in production? Get started with a 90-day evaluation of NVIDIA AI Enterprise

Follow the steps below to download and run the NVIDIA NIM inference microservice for this model on your infrastructure of choice.

Step 1
Generate API Key

Step 2
Pull and Run the NIM

$ docker login nvcr.io
Username: $oauthtoken
Password: <PASTE_API_KEY_HERE>

Launch the Riva ASR NIM with Whisper Large v3 multilingual model with the command below. Refer Supported Models for full list of models.

export NGC_API_KEY=<PASTE_API_KEY_HERE>

docker run -it --rm --name=whisper-large-v3 \
   --runtime=nvidia \
   --gpus '"device=0"' \
   --shm-size=8GB \
   -e NGC_API_KEY \
   -e NIM_HTTP_API_PORT=9000 \
   -e NIM_GRPC_API_PORT=50051 \
   -p 9000:9000 \
   -p 50051:50051 \
   -e NIM_TAGS_SELECTOR=name=whisper-large-v3 \
   nvcr.io/nim/nvidia/whisper-large-v3:latest
It may take a up to 30 minutes depending on your network speed, for the container to be ready and start accepting requests from the time the docker container is started.

Step 3
Test the NIM

Open a new terminal and run following command to check if the service is ready to handle inference requests

curl -X 'GET' 'http://localhost:9000/v1/health/ready'

If the service is ready, you get a response similar to the following.

{"ready":true}

Install the Riva Python client package

sudo apt-get install python3-pip
pip install -U nvidia-riva-client

Download Riva sample clients

git clone https://github.com/nvidia-riva/python-clients.git

Run Speech to Text inference in offline mode. Riva ASR supports Mono, 16-bit audio in WAV, OPUS and FLAC formats.

python3 python-clients/scripts/asr/transcribe_file_offline.py --server 0.0.0.0:50051 \
   --language-code <BCP-47 language code> --input-file <path_to_speech_file>

For more details on getting started with this NIM, visit the NVIDIA NIM Docs.