NIM on Spark
Deploy a NIM on Spark
Verify environment prerequisites
Check that your system meets the basic requirements for running GPU-enabled containers.
nvidia-smi
docker --version
docker run --rm --gpus all nvidia/cuda:12.0-base-ubuntu20.04 nvidia-smi
Configure NGC authentication
Set up access to NVIDIA's container registry using your NGC API key.
export NGC_API_KEY="<YOUR_NGC_API_KEY>"
echo "$NGC_API_KEY" | docker login nvcr.io --username '$oauthtoken' --password-stdin
Select and configure NIM container
Choose a specific LLM NIM from NGC and set up local caching for model assets.
export CONTAINER_NAME="nim-llm-demo"
export IMG_NAME="nvcr.io/nim/meta/llama-3.1-8b-instruct-dgx-spark:latest"
export LOCAL_NIM_CACHE=~/.cache/nim
mkdir -p "$LOCAL_NIM_CACHE"
chmod -R a+w "$LOCAL_NIM_CACHE"
Launch NIM container
Start the containerized LLM service with GPU acceleration and proper resource allocation.
docker run -it --rm --name=$CONTAINER_NAME \
--runtime=nvidia \
--gpus all \
--shm-size=16GB \
-e NGC_API_KEY=$NGC_API_KEY \
-v "$LOCAL_NIM_CACHE:/opt/nim/.cache" \
-u $(id -u) \
-p 8000:8000 \
$IMG_NAME
The container will download the model on first run and may take several minutes to start. Look for startup messages indicating the service is ready.
Validate inference endpoint
Test the deployed service with a basic completion request to verify functionality. Run the following curl command in a new terminal.
curl -X 'POST' \
'http://0.0.0.0:8000/v1/chat/completions' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"model": "meta/llama-3.1-8b-instruct",
"messages": [
{
"role":"system",
"content":"detailed thinking on"
},
{
"role":"user",
"content":"Can you write me a song?"
}
],
"top_p": 1,
"n": 1,
"max_tokens": 15,
"frequency_penalty": 1.0,
"stop": ["hello"]
}'
Expected output should be a JSON response containing a completion field with generated text.
Cleanup and rollback
Remove the running container and optionally clean up cached model files.
WARNING
Removing cached models will require re-downloading on next run.
docker stop $CONTAINER_NAME
docker rm $CONTAINER_NAME
To remove cached models and free disk space:
rm -rf "$LOCAL_NIM_CACHE"
Next steps
With a working NIM deployment, you can:
- Integrate the API endpoint into your applications using the OpenAI-compatible interface
- Experiment with different models available in the NGC catalog
- Scale the deployment using container orchestration tools
- Monitor resource usage and optimize container resource allocation
Test the integration with your preferred HTTP client or SDK to begin building applications.