NVIDIA
Explore
Models
Blueprints
GPUs
Docs
⌘KCtrl+K
View All Playbooks
View All Playbooks

onboarding

  • Set Up Local Network Access
  • Open WebUI with Ollama

data science

  • Single-cell RNA Sequencing
  • Portfolio Optimization
  • CUDA-X Data Science
  • Optimized JAX
  • Text to Knowledge Graph

tools

  • VS Code
  • DGX Dashboard
  • Comfy UI
  • RAG Application in AI Workbench
  • Set up Tailscale on Your Spark

fine tuning

  • Fine-tune with Pytorch
  • FLUX.1 Dreambooth LoRA Fine-tuning
  • LLaMA Factory
  • Fine-tune with NeMo
  • Unsloth on DGX Spark

use case

  • Install and Use Isaac Sim and Isaac Lab
  • Live VLM WebUI
  • Vibe Coding in VS Code
  • Build and Deploy a Multi-Agent Chatbot
  • NCCL for Two Sparks
  • Connect Two Sparks
  • Build a Video Search and Summarization (VSS) Agent

inference

  • Nemotron-3-Nano with llama.cpp
  • Speculative Decoding
  • vLLM for Inference
  • SGLang for Inference
  • TRT LLM for Inference
  • Multi-modal Inference
  • NIM on Spark
  • NVFP4 Quantization
Terms of Use
Privacy Policy
Your Privacy Choices
Contact

Copyright © 2026 NVIDIA Corporation

NIM on Spark

30 MIN

Deploy a NIM on Spark

OverviewOverviewInstructionsInstructionsTroubleshootingTroubleshooting
SymptomCauseFix
Container fails to start with GPU errorNVIDIA Container Toolkit not configuredInstall nvidia-container-toolkit and restart Docker
"Invalid credentials" during docker loginIncorrect NGC API key formatVerify API key from NGC portal, ensure no extra whitespace
Model download hangs or failsNetwork connectivity or insufficient disk spaceCheck internet connection and available disk space in cache directory
API returns 404 or connection refusedContainer not fully started or wrong portWait for container startup completion, verify port 8000 is accessible
runtime not foundNVIDIA Container Toolkit not properly configuredRun sudo nvidia-ctk runtime configure --runtime=docker and restart Docker

NOTE

DGX Spark uses a Unified Memory Architecture (UMA), which enables dynamic memory sharing between the GPU and CPU. With many applications still updating to take advantage of UMA, you may encounter memory issues even when within the memory capacity of DGX Spark. If that happens, manually flush the buffer cache with:

sudo sh -c 'sync; echo 3 > /proc/sys/vm/drop_caches'

Resources

  • DGX Spark Documentation
  • DGX Spark Forum
  • DGX Spark User Performance Guide